Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
J Med Entomol ; 61(3): 818-823, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38408180

RESUMEN

Arboviruses can be difficult to detect in the field due to relatively low prevalence in mosquito populations. The discovery that infected mosquitoes can release viruses in both their saliva and excreta gave rise to low-cost methods for the detection of arboviruses during entomological surveillance. We implemented both saliva and excreta-based entomological surveillance during the emergence of Zika virus (ZIKV) in French Guiana in 2016 by trapping mosquitoes around households of symptomatic cases with confirmed ZIKV infection. ZIKV was detected in mosquito excreta and not in mosquito saliva in 1 trap collection out of 85 (1.2%). One female Ae. aegypti L. (Diptera: Culicidae) was found with a ZIKV systemic infection in the corresponding trap. The lag time between symptom onset in a ZIKV-infected individual living near the trap site and ZIKV detection in this mosquito was 1 wk. These results highlight the potential of detection in excreta from trapped mosquitoes as a sensitive and cost-effective method to non invasively detect arbovirus circulation.


Asunto(s)
Aedes , Heces , Saliva , Virus Zika , Animales , Guyana Francesa , Virus Zika/aislamiento & purificación , Heces/virología , Femenino , Aedes/virología , Saliva/virología , Mosquitos Vectores/virología , Masculino , Infección por el Virus Zika/transmisión
2.
Trop Med Infect Dis ; 8(3)2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36977169

RESUMEN

The mosquito (Diptera: Culicidae) fauna of French Guiana encompasses 242 species, of which nearly half of them belong to the genus Culex. Whereas several species of Culex are important vectors of arboviruses, only a limited number of studies focus on them due to the difficulties to morphologically identify field-caught females. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been reported as a promising method for the identification of mosquitoes. Culex females collected in French Guiana were morphologically identified and dissected. Abdomens were used for molecular identification using the COI (cytochrome oxidase 1) gene. Legs and thorax of 169 specimens belonging to 13 Culex species, (i.e., Cx. declarator, Cx. nigripalpus, Cx. quinquefasciatus, Cx. usquatus, Cx. adamesi, Cx. dunni, Cx. eastor, Cx. idottus, Cx. pedroi, Cx. phlogistus, Cx. portesi, Cx. rabanicolus and Cx. spissipes) were then submitted to MALDI-TOF MS analysis. A high intra-species reproducibility and inter-species specificity of MS spectra for each mosquito body part tested were obtained. A corroboration of the specimen identification was revealed between MALDI-TOF MS, morphological and molecular results. MALDI-TOF MS protein profiling proves to be a suitable tool for identification of neotropical Culex species and will permit the enhancement of knowledge on this highly diverse genus.

3.
Am J Trop Med Hyg ; 108(2): 424-427, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36535248

RESUMEN

Anopheles darlingi is the main vector of malaria in South America. In French Guiana, malaria transmission occurs inland and along the rivers with a regular reemergence in the lower Oyapock area. Control against malaria vectors includes indoor residual spraying of deltamethrin and the distribution of long-lasting impregnated bednets. In this context, the level of resistance to pyrethroids was monitored for 4 years using CDC bottle tests in An. darlingi populations. A loss of susceptibility to pyrethroids was recorded with 30-minute knock-down measured as low as 81%. However, no pyrethroid molecular resistance was found by sequencing a 170 base pair fragment of the S6 segment of domain II of the voltage-gated sodium channel gene. Fluctuation of resistance phenotypes may be influenced by the reintroduction of susceptible alleles from sylvatic populations or by other mechanisms of metabolic resistance.


Asunto(s)
Anopheles , Insecticidas , Malaria , Piretrinas , Animales , Anopheles/genética , Guyana Francesa , Resistencia a los Insecticidas/genética , Mosquitos Vectores/genética , Malaria/prevención & control , Piretrinas/farmacología , Insecticidas/farmacología , Control de Mosquitos
4.
Med Vet Entomol ; 36(4): 486-495, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35762523

RESUMEN

The urban mosquito species Aedes aegypti is the main vector of arboviruses worldwide. Mosquito control with insecticides is the most prevalent method for preventing transmission in the absence of effective vaccines and available treatments; however, the extensive use of insecticides has led to the development of resistance in mosquito populations throughout the world, and the number of epidemics caused by arboviruses has increased. Three mosquito lines with different resistance profiles to deltamethrin were isolated in French Guiana, including one with the I1016 knock-down resistant allele. Significant differences were observed in the cumulative proportion of mosquitoes with a disseminated chikungunya virus infection over time across these lines. In addition, some genes related to resistance (CYP6BB2, CYP6N12, GST2, trypsin) were variably overexpressed in the midgut at 7 days after an infectious bloodmeal in these three lines. Our work shows that vector competence for chikungunya virus varied between Ae. aegypti laboratory lines with different deltamethrin resistance profiles. More accurate verification of the functional association between insecticide resistance and vector competence remains to be demonstrated.


Asunto(s)
Aedes , Arbovirus , Virus Chikungunya , Insecticidas , Animales , Insecticidas/farmacología , Mosquitos Vectores , Resistencia a los Insecticidas/genética
5.
Pest Manag Sci ; 77(12): 5589-5598, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34398490

RESUMEN

BACKGROUND: Pyrethroid insecticides such as deltamethrin have been massively used against Aedes aegypti leading to the spread of resistance alleles worldwide. In an insecticide resistance management context, we evaluated the temporal dynamics of deltamethrin resistance using two distinct populations carrying resistant alleles at different frequencies. Three different scenarios were followed: a continuous selection, a full release of selection, or a repeated introgression with susceptible individuals. The responses of each population to these selection regimes were measured across five generations by bioassays and by monitoring the frequency of knockdown resistance (kdr) mutations and the transcription levels and copy number variations of key detoxification enzymes. RESULTS: Knockdown resistance mutations, overexpression and copy number variations of detoxification enzymes as a mechanism of metabolic resistance to deltamethrin was found and maintained under selection across generations. On comparison, the release of insecticide pressure for five generations did not affect resistance levels and resistance marker frequencies. However, introgressing susceptible alleles drastically reduced deltamethrin resistance in only three generations. CONCLUSION: The present study confirmed that strategies consisting to stop deltamethrin spraying are likely to fail when the frequencies of resistant alleles are too high and the fitness cost associated to resistance is low. In dead-end situations like in French Guiana where alternative insecticides are not available, alternative control strategies may provide a high benefit for vector control, particularly if they favor the introgression of susceptible alleles in natural populations. © 2021 Society of Chemical Industry.


Asunto(s)
Aedes , Arbovirus , Insecticidas , Piretrinas , Aedes/genética , Animales , Variaciones en el Número de Copia de ADN , Guyana Francesa , Humanos , Resistencia a los Insecticidas/genética , Insecticidas/farmacología , Mosquitos Vectores/genética , Nueva Caledonia , Nitrilos , Piretrinas/farmacología
6.
Mem Inst Oswaldo Cruz ; 115: e200313, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33533870

RESUMEN

BACKGROUND: Aedes aegypti is the sole vector of urban arboviruses in French Guiana. Overtime, the species has been responsible for the transmission of viruses during yellow fever, dengue, chikungunya and Zika outbreaks. Decades of vector control have produced resistant populations to deltamethrin, the sole molecule available to control adult mosquitoes in this French Territory. OBJECTIVES: Our surveillance aimed to provide public health authorities with data on insecticide resistance in Ae. aegypti populations and other species of interest in French Guiana. Monitoring resistance to the insecticide used for vector control and to other molecule is a key component to develop an insecticide resistance management plan. METHODS: In 2009, we started to monitor resistance phenotypes to deltamethrin and target-site mechanisms in Ae. aegypti populations across the territory using the WHO impregnated paper test and allelic discrimination assay. FINDINGS: Eight years surveillance revealed well-installed resistance and the dramatic increase of alleles on the sodium voltage-gated gene, known to confer resistance to pyrethroids (PY). In addition, we observed that populations were resistant to malathion (organophosphorous, OP) and alpha-cypermethrin (PY). Some resistance was also detected to molecules from the carbamate family. Finally, those populations somehow recovered susceptibility against fenitrothion (OP). In addition, other species distributed in urban areas revealed to be also resistant to pyrethroids. CONCLUSION: The resistance level can jeopardize the efficiency of chemical adult control in absence of other alternatives and conducts to strongly rely on larval control measures to reduce mosquito burden. Vector control strategies need to evolve to maintain or regain efficacy during epidemics.


Asunto(s)
Aedes/efectos de los fármacos , Insectos Vectores/genética , Resistencia a los Insecticidas/genética , Insecticidas/farmacología , Mosquitos Vectores/efectos de los fármacos , Piretrinas/farmacología , Aedes/genética , Aedes/virología , Animales , Guyana Francesa , Insectos Vectores/efectos de los fármacos , Control de Mosquitos/métodos , Mosquitos Vectores/virología , Análisis Espacio-Temporal
7.
PLoS One ; 16(1): e0243992, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33428654

RESUMEN

Insecticide resistance is a worldwide threat for vector control around the world, and Aedes aegypti, the main vector of several arboviruses, is a particular concern. To better understand the mechanisms of resistance, four isofemale strains originally from French Guiana were isolated and analysed using combined approaches. The activity of detoxification enzymes involved in insecticide resistance was assayed, and mutations located at positions 1016 and 1534 of the sodium voltage-gated channel gene, which have been associated with pyrethroid resistance in Aedes aegypti populations in Latin America, were monitored. Resistance to other insecticide families (organophosphates and carbamates) was evaluated. A large-scale proteomic analysis was performed to identify proteins involved in insecticide resistance. Our results revealed a metabolic resistance and resistance associated with a mutation of the sodium voltage-gated channel gene at position 1016. Metabolic resistance was mediated through an increase of esterase activity in most strains but also through the shifts in the abundance of several cytochrome P450 (CYP450s). Overall, resistance to deltamethrin was linked in the isofemale strains to resistance to other class of insecticides, suggesting that cross- and multiple resistance occur through selection of mechanisms of metabolic resistance. These results give some insights into resistance to deltamethrin and into multiple resistance phenomena in populations of Ae. aegypti.


Asunto(s)
Aedes/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Proteínas de Insectos/genética , Resistencia a los Insecticidas/genética , Canales de Sodio Activados por Voltaje/genética , Aedes/efectos de los fármacos , Aedes/genética , Animales , Esterasas/metabolismo , Femenino , Guyana Francesa , Técnicas de Silenciamiento del Gen , Genotipo , Inactivación Metabólica/genética , Proteínas de Insectos/antagonistas & inhibidores , Proteínas de Insectos/metabolismo , Insecticidas/farmacología , Mucosa Intestinal/metabolismo , Nitrilos/farmacología , Oligonucleótidos/metabolismo , Polimorfismo de Nucleótido Simple , Proteoma/análisis , Proteómica , Piretrinas/farmacología , Canales de Sodio Activados por Voltaje/química , Canales de Sodio Activados por Voltaje/metabolismo
8.
Microb Ecol ; 81(1): 93-109, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32621210

RESUMEN

Aedes aegypti develop in aquatic habitats in which mosquito larvae are exposed to physicochemical elements and microorganisms that may influence their life cycle and their ability to transmit arboviruses. Little is known about the natural bacterial communities associated with A. aegypti or their relation to the biotic and abiotic characteristics of their aquatic habitats. We characterized the physicochemical properties and bacterial microbiota of A. aegypti breeding sites and larvae on Guadeloupe and in French Guiana. In addition, we explored whether geographic location, the type of breeding site and physicochemical parameters influenced the microbiota associated with this mosquito species. We used large-scale 16S rRNA gene sequencing of 160 breeding sites and 147 pools of A. aegypti larvae and recorded 12 physicochemical parameters at the sampled breeding sites. Ordination plots and multiple linear regression were used to assess the influence of environmental factors on the bacterial microbiota of water and larvae. We found territory-specific differences in physicochemical properties (dissolved oxygen, conductivity) and the composition of bacterial communities in A. aegypti breeding sites that influenced the relative abundance of several bacteria genera (e.g., Methylobacterium, Roseoccocus) on the corresponding larvae. A significant fraction of the bacterial communities identified on larvae, dominated by Herbiconiux and Microvirga genera, were consistently enriched in mosquitoes regardless the location. In conclusion, territory-specific differences observed in the biotic and abiotic properties of A. aegypti breeding sites raise concern about the impact of these changes on pathogen transmission by different A. aegypti populations.


Asunto(s)
Aedes/crecimiento & desarrollo , Aedes/microbiología , Bacterias/aislamiento & purificación , Microbiota/genética , Agua/química , Animales , Bacterias/clasificación , Bacterias/genética , Guyana Francesa , Guadalupe , Larva/crecimiento & desarrollo , Larva/microbiología , Mosquitos Vectores/crecimiento & desarrollo , Mosquitos Vectores/microbiología , ARN Ribosómico 16S/genética
9.
Acta Trop ; 201: 105179, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31539525

RESUMEN

Natural products have proven to be an immeasurable source of bioactive compounds. The exceptional biodiversity encountered in Amazonia, alongside a rich entomofauna and frequent interactions with various herbivores is the crucible of a promising chemodiversity. This prompted us to search for novel botanical insecticides in French Guiana. As this French overseas department faces severe issues linked to insects, notably the strong incidence of vector-borne infectious diseases, we decided to focus our research on products able to control the mosquito Aedes aegypti. We tested 452 extracts obtained from 85 species originating from 36 botanical families and collected in contrasted environments against an Ae. aegypti laboratory strain susceptible to all insecticides, and a natural population resistant to both pyrethroid and organophosphate insecticides collected in Cayenne for the most active of them. Eight species (Maytenus oblongata Reissek, Celastraceae; Costus erythrothyrsus Loes., Costaceae; Humiria balsamifera Aubl., Humiriaceae; Sextonia rubra (Mez) van der Werff, Lauraceae; Piper hispidum Sw., Piperaceae; Laetia procera (Poepp.) Eichl., Salicaceae; Matayba arborescens (Aubl.) Radlk., Sapindaceae; and Cupania scrobitulata Rich., Sapindaceae) led to extracts exhibiting more than 50% larval mortality after 48 h of exposition at 100 µg/mL against the natural population and were considered active. Selectivity and phytochemistry of these extracts were therefore investigated and discussed, and some active compounds highlighted. Multivariate analysis highlighted that solvents, plant tissues, plant family and location had a significant effect on mortality while light, available resources and vegetation type did not. Through this case study we highlighted that plant defensive chemistry mechanisms are crucial while searching for novel insecticidal products.


Asunto(s)
Aedes , Insecticidas/farmacología , Extractos Vegetales/farmacología , Animales , Guyana Francesa , Larva/efectos de los fármacos , Control de Mosquitos
10.
Mem. Inst. Oswaldo Cruz ; 115: e200313, 2020. tab, graf
Artículo en Inglés | LILACS | ID: biblio-1154867

RESUMEN

BACKGROUND Aedes aegypti is the sole vector of urban arboviruses in French Guiana. Overtime, the species has been responsible for the transmission of viruses during yellow fever, dengue, chikungunya and Zika outbreaks. Decades of vector control have produced resistant populations to deltamethrin, the sole molecule available to control adult mosquitoes in this French Territory. OBJECTIVES Our surveillance aimed to provide public health authorities with data on insecticide resistance in Ae. aegypti populations and other species of interest in French Guiana. Monitoring resistance to the insecticide used for vector control and to other molecule is a key component to develop an insecticide resistance management plan. METHODS In 2009, we started to monitor resistance phenotypes to deltamethrin and target-site mechanisms in Ae. aegypti populations across the territory using the WHO impregnated paper test and allelic discrimination assay. FINDINGS Eight years surveillance revealed well-installed resistance and the dramatic increase of alleles on the sodium voltage-gated gene, known to confer resistance to pyrethroids (PY). In addition, we observed that populations were resistant to malathion (organophosphorous, OP) and alpha-cypermethrin (PY). Some resistance was also detected to molecules from the carbamate family. Finally, those populations somehow recovered susceptibility against fenitrothion (OP). In addition, other species distributed in urban areas revealed to be also resistant to pyrethroids. CONCLUSION The resistance level can jeopardize the efficiency of chemical adult control in absence of other alternatives and conducts to strongly rely on larval control measures to reduce mosquito burden. Vector control strategies need to evolve to maintain or regain efficacy during epidemics.


Asunto(s)
Animales , Piretrinas/farmacología , Resistencia a los Insecticidas/efectos de los fármacos , Resistencia a los Insecticidas/genética , Aedes/efectos de los fármacos , Mosquitos Vectores/efectos de los fármacos , Insecticidas/farmacología , Control de Mosquitos/métodos , Aedes/genética , Análisis Espacio-Temporal , Mosquitos Vectores/virología , Guyana Francesa , Insectos Vectores/efectos de los fármacos , Insectos Vectores/genética
12.
Mem Inst Oswaldo Cruz ; 111(9): 561-9, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27653361

RESUMEN

In French Guiana, malaria vector control and prevention relies on indoor residual spraying and distribution of long lasting insecticidal nets. These measures are based on solid epidemiological evidence but reveal a poor understanding of the vector. The current study investigated the behaviour of both vectors and humans in relation to the ongoing prevention strategies. In 2012 and 2013, Anopheles mosquitoes were sampled outdoors at different seasons and in various time slots. The collected mosquitoes were identified and screened for Plasmodium infection. Data on human behaviour and malaria episodes were obtained from an interview. A total of 3,135 Anopheles mosquitoes were collected, of which Anopheles darlingi was the predominant species (96.2%). For the December 2012-February 2013 period, the Plasmodium vivax infection rate for An. darlingi was 7.8%, and the entomological inoculation rate was 35.7 infective bites per person per three-month span. In spite of high bednet usage (95.7%) in 2012 and 2013, 52.2% and 37.0% of the participants, respectively, had at least one malaria episode. An. darlingi displayed heterogeneous biting behaviour that peaked between 20:30 and 22:30; however, 27.6% of the inhabitants were not yet protected by bednets by 21:30. The use of additional individual and collective protective measures is required to limit exposure to infective mosquito bites and reduce vector densities.


Asunto(s)
Anopheles/fisiología , Mordeduras y Picaduras de Insectos , Insectos Vectores/fisiología , Animales , Anopheles/clasificación , Anopheles/parasitología , Femenino , Bosques , Guyana Francesa , Humanos , Insectos Vectores/clasificación , Insectos Vectores/parasitología , Malaria Falciparum/transmisión , Malaria Vivax/transmisión , Densidad de Población , Estaciones del Año , Especificidad de la Especie
13.
Mem. Inst. Oswaldo Cruz ; 111(9): 561-569, Sept. 2016. tab, graf
Artículo en Inglés | LILACS | ID: lil-794724

RESUMEN

In French Guiana, malaria vector control and prevention relies on indoor residual spraying and distribution of long lasting insecticidal nets. These measures are based on solid epidemiological evidence but reveal a poor understanding of the vector. The current study investigated the behaviour of both vectors and humans in relation to the ongoing prevention strategies. In 2012 and 2013, Anopheles mosquitoes were sampled outdoors at different seasons and in various time slots. The collected mosquitoes were identified and screened for Plasmodium infection. Data on human behaviour and malaria episodes were obtained from an interview. A total of 3,135 Anopheles mosquitoes were collected, of which Anopheles darlingi was the predominant species (96.2%). For the December 2012-February 2013 period, the Plasmodium vivax infection rate for An. darlingi was 7.8%, and the entomological inoculation rate was 35.7 infective bites per person per three-month span. In spite of high bednet usage (95.7%) in 2012 and 2013, 52.2% and 37.0% of the participants, respectively, had at least one malaria episode. An. darlingi displayed heterogeneous biting behaviour that peaked between 20:30 and 22:30; however, 27.6% of the inhabitants were not yet protected by bednets by 21:30. The use of additional individual and collective protective measures is required to limit exposure to infective mosquito bites and reduce vector densities.


Asunto(s)
Humanos , Animales , Femenino , Anopheles/fisiología , Mordeduras y Picaduras de Insectos , Insectos Vectores/fisiología , Anopheles/clasificación , Anopheles/parasitología , Bosques , Guyana Francesa , Insectos Vectores/clasificación , Insectos Vectores/parasitología , Malaria Falciparum/transmisión , Malaria Vivax/transmisión , Densidad de Población , Estaciones del Año , Especificidad de la Especie
14.
J Am Mosq Control Assoc ; 32(4): 337-340, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28206865

RESUMEN

Research on natural insecticides has intensified with the spread of resistance to chemicals among insects, particularly disease vectors. To evaluate compounds, the World Health Organization (WHO) has published standardized procedures. However, those may be excessively compound-consuming when it comes to assessing the activity of natural extracts and pure compounds isolated in limited amount. As part of our work on the discovery of new mosquito larvicides from Amazonian plants, we developed a compound-saving assay in 5-ml glass tubes instead of WHO larval 100-ml cups. Comparing activity of synthetic and natural chemicals validated the glass tube assay. Raw data, lethal doses that kill 50% (LD50) and 90% (LD90) at 24 and 48 h, were highly correlated (0.68 < R2 < 0.96, P < 0.001, Pearson test) between cups and tubes. It was also established that 10 tubes (N = 50 larvae) provided the same level of sensitivity as 20 tubes (N = 100). This method proved suitable for rapid screening of natural extracts and molecules, identifying active compounds using 10 times less material than in the WHO protocol.


Asunto(s)
Aedes/efectos de los fármacos , Insecticidas/toxicidad , Control de Mosquitos/métodos , Extractos Vegetales/toxicidad , Aedes/crecimiento & desarrollo , Animales , Larva/efectos de los fármacos , Extractos Vegetales/química
15.
PLoS Negl Trop Dis ; 9(11): e0004226, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26588076

RESUMEN

BACKGROUND: Aedes aegypti is a cosmopolite mosquito, vector of arboviruses. The worldwide studies of its insecticide resistance have demonstrated a strong loss of susceptibility to pyrethroids, the major class of insecticide used for vector control. French overseas territories such as French Guiana (South America), Guadeloupe islands (Lesser Antilles) as well as New Caledonia (Pacific Ocean), have encountered such resistance. METHODOLOGY/PRINCIPAL FINDINGS: We initiated a research program on the pyrethroid resistance in French Guiana, Guadeloupe and New Caledonia. Aedes aegypti populations were tested for their deltamethrin resistance level then screened by an improved microarray developed to specifically study metabolic resistance mechanisms. Cytochrome P450 genes were implicated in conferring resistance. CYP6BB2, CYP6M11, CYP6N12, CYP9J9, CYP9J10 and CCE3 genes were upregulated in the resistant populations and were common to other populations at a regional scale. The implication of these genes in resistance phenomenon is therefore strongly suggested. Other genes from detoxification pathways were also differentially regulated. Screening for target site mutations on the voltage-gated sodium channel gene demonstrated the presence of I1016 and C1534. CONCLUSION /SIGNIFICANCE: This study highlighted the presence of a common set of differentially up-regulated detoxifying genes, mainly cytochrome P450 genes in all three populations. GUA and GUY populations shared a higher number of those genes compared to CAL. Two kdr mutations well known to be associated to pyrethroid resistance were also detected in those two populations but not in CAL. Different selective pressures and genetic backgrounds can explain such differences. These results are also compared with those obtained from other parts of the world and are discussed in the context of integrative research on vector competence.


Asunto(s)
Aedes/efectos de los fármacos , Resistencia a los Insecticidas , Insecticidas/farmacología , Nitrilos/farmacología , Piretrinas/farmacología , Aedes/genética , Animales , Sistema Enzimático del Citocromo P-450/genética , Femenino , Guyana Francesa , Perfilación de la Expresión Génica , Guadalupe , Análisis por Micromatrices , Proteínas Mutantes/genética , Nueva Caledonia , Canales de Sodio Activados por Voltaje/genética
16.
Environ Entomol ; 44(3): 454-62, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26313950

RESUMEN

Information on dynamics of anopheline mosquitoes is limited in the coastal zone of French Guiana compared with inland endemic areas. Importantly, improvement of surveillance techniques for assessing malaria transmission indicators and comprehension of impact of meteorological factors on Anopheles darlingi Root, the main malaria vector, are necessary. Anopheline mosquitoes were collected continuously during 2012 and 2013 using Mosquito Magnet traps baited with octenol and human landing catches. The two methods were compared based on trends in abundance and parity rate of An. darlingi. Impact of meteorological factors on An. darlingi density estimates was investigated using Spearman's correlation and by binomial negative regression analysis. In all, 11,928 anopheline mosquitoes were collected, and 90.7% (n = 10,815) were identified consisting of four species, with An. darlingi making up 94.9% (n = 10,264). An. darlingi specimens collected by the two methods were significantly correlated, and no difference in parity rate was observed. The abundance of this species peaked in September (dry season) and variations along the years were influenced by relative humidity, temperature, rainfall, and wind speed. Number of mosquitoes collected during peak aggression period was influenced by wind speed and rainfall. Data gathered in this study provide fundamental information about An. darlingi, which can facilitate the design of vector control strategies and construction of models for predicting malaria risk.


Asunto(s)
Anopheles/clasificación , Insectos Vectores/clasificación , Control de Mosquitos/instrumentación , Octanoles/farmacología , Tiempo (Meteorología) , Animales , Bovinos , Monitoreo Epidemiológico , Femenino , Guyana Francesa , Humanos , Malaria/transmisión , Control de Mosquitos/métodos , Dinámica Poblacional , Estaciones del Año
17.
Malar J ; 13: 384, 2014 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-25260354

RESUMEN

BACKGROUND: In French Guiana, Mosquito Magnet® Liberty Plus trap baited with octenol (MMoct) has been proposed for sampling Anopheles darlingi after comparison with CDC light trap and Human landing catch (HLC). However, other available lures were not tested. The current study compared MMoct and MM baited with Lurex™ (MMlur) to HLC, and analysed entomological data from MMoct collection with malaria cases to facilitate malaria surveillance. METHODS: Two independent experiments were conducted during 2012 and 2013 in Saint-Georges town, French Guiana. The first experiment used Latin square design to compare MMoct and MMlur to HLC between 18:30 to 22:30 and 05:00 to 07:00. Parity rate was determined for An. darlingi from each sampling system. In the second experiment, a 24:00 hour collection was done for four consecutive days during the first week of each month and every four days for the rest of the month using MMoct. Portion of the 24 hour collection was dissected for parity rate. All anophelines were screened for Plasmodium infection by PCR. Data for number of malaria cases was analysed for association with density of An. darlingi. RESULTS: In the first experiment, 3,721 anopheline mosquitoes were collected over 21 nights. Of these, 95.7% was identified morphologically to five species and An. darlingi contributed 98.4%, mainly from HLC (75.1%, CI 95% [73.2-77.0]) than MMoct (14.1%, CI 95% [12.6-15.7]) and MMlur (10.8%, CI 95% [9.4-12.2]). Species richness was highest in HLC meanwhile species diversity index was greatest in MMoct. MMoct collected more parous An. darlingi than HLC (p<0.0001) and MMlur (p=0.0021). The second experiment amounted to 2035 females, 60.8% belonging to 10 species. Anopheles darlingi constituted 85.0% of the species and had parity rate of 52.3%. Specimens were uninfected with Plasmodium. Density of An. darlingi best correlated with malaria cases observed six weeks later (p=0.0016; r=0.4774). CONCLUSION: Though MMoct and MMlur performed well in sampling An. darlingi, MMoct captured more species and, therefore, would be useful for surveillance. Even if it collected mostly parous mosquitoes, MMoct proved useful in collecting entomological data required for predicting malaria emergence. It is a potential replacement for HLC.


Asunto(s)
Anopheles , Malaria/transmisión , Control de Mosquitos/instrumentación , Octanoles , Animales , Monitoreo Epidemiológico , Femenino , Guyana Francesa/epidemiología , Humanos , Modelos Lineales , Malaria/epidemiología , Malaria/prevención & control , Control de Mosquitos/métodos
18.
J Vector Ecol ; 38(2): 203-9, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24581346

RESUMEN

In French Guiana, Anopheles darlingi is considered the main malaria vector. However, several reports have hypothesized the implication of other anopheline species in malaria transmission for the territory. Data on the ecology of these other potential vectors is rare or even unexplored in French Guiana. The aim of this study was to describe the biting habits of several anopheline species in multiple localities in French Guiana. Six sampling sites yielded 1,083 anopheline adults. Results indicated the presence of An. darlingi in all study locations and it was the only species to be collected inside villages. Other anophelines collected included An. aquasalis, An. braziliensis, An. intermedius, An. mediopunctatus, An. nuneztovari, An. oswaldoi, and An. triannulatus, all of which were associated with open areas and forests. The environment and time, at which biting behavior was recorded, varied for each species. It was noted that An. oswaldoi showed a daytime rhythm in open areas. This study is the first to report on the biting habits of a range of anophelines in French Guiana that may play a role in malaria transmission. This information is vital to fully describe the risk of malaria transmission and thereby design appropriate vector control measures and malaria prevention programs.


Asunto(s)
Anopheles/fisiología , Animales , Mordeduras y Picaduras , Guyana Francesa , Insectos Vectores/fisiología , Malaria/transmisión , Densidad de Población
19.
Mem. Inst. Oswaldo Cruz ; 107(3): 429-432, May 2012. mapas, tab
Artículo en Inglés | LILACS | ID: lil-624028

RESUMEN

Anopheles darlingi Root is the major vector of human malaria in the Neotropics and has been considered to be the sole malaria vector in French Guiana. The presence of other potential vectors suggests that malaria may be transmitted by other species under certain conditions. From 2006-2011, all anopheline specimens collected from 11 localities were assayed to determine if the Plasmodium circumsporozoite protein was present. In addition to An. darlingi, we found Anopheles oswaldoi, Anopheles intermedius and Anopheles nuneztovari specimens that were infected with Plasmodium sp. Further investigations on the behaviour and ecology of An. oswaldoi, An. intermedius and An. nuneztovari are necessary to determine their role in malaria transmission in French Guiana.


Asunto(s)
Animales , Femenino , Humanos , Anopheles/parasitología , Insectos Vectores/parasitología , Plasmodium falciparum/química , Plasmodium malariae/química , Plasmodium vivax/química , Proteínas Protozoarias/análisis , Anopheles/clasificación , Ensayo de Inmunoadsorción Enzimática , Guyana Francesa , Insectos Vectores/clasificación , Malaria/transmisión , Densidad de Población , Plasmodium falciparum/aislamiento & purificación , Plasmodium malariae/aislamiento & purificación , Plasmodium vivax/aislamiento & purificación , Estaciones del Año
20.
Mem Inst Oswaldo Cruz ; 107(3): 429-32, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22510842

RESUMEN

Anopheles darlingi Root is the major vector of human malaria in the Neotropics and has been considered to be the sole malaria vector in French Guiana. The presence of other potential vectors suggests that malaria may be transmitted by other species under certain conditions. From 2006-2011, all anopheline specimens collected from 11 localities were assayed to determine if the Plasmodium circumsporozoite protein was present. In addition to An. darlingi, we found Anopheles oswaldoi, Anopheles intermedius and Anopheles nuneztovari specimens that were infected with Plasmodium sp. Further investigations on the behaviour and ecology of An. oswaldoi, An. intermedius and An. nuneztovari are necessary to determine their role in malaria transmission in French Guiana.


Asunto(s)
Anopheles/parasitología , Insectos Vectores/parasitología , Plasmodium falciparum/química , Plasmodium malariae/química , Plasmodium vivax/química , Proteínas Protozoarias/análisis , Animales , Anopheles/clasificación , Ensayo de Inmunoadsorción Enzimática , Femenino , Guyana Francesa , Humanos , Insectos Vectores/clasificación , Malaria/transmisión , Plasmodium falciparum/aislamiento & purificación , Plasmodium malariae/aislamiento & purificación , Plasmodium vivax/aislamiento & purificación , Densidad de Población , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...